"Recently, we have a typical factory operation equipped with a 94-kilowatt system, in Stuhr near Bremen. The customer is a mold maker, which consumes around 200,000 kilowatt hours per year. The main consumers are the motor of the machine. The system was installed on an east-west roof, it was the end of April.Without memory we've been putting reaches a self-consumption rate of more than 90 percent. In mid-year, we expect a consumption rate of about 70 percent. The pre-planning was only four weeks."
This system probably produces about 900 to 1000 kWh per kW installed - AKA: 900 kWh/kWp. 94 kW * 900 kWh/kWp = 84,600 kWh/year. If 90% of this electricity is consumed onsite that's 76,140 kWh/year out of their total consumption of 200,000 kWh/year. This means this factory will be 38% self-sufficient... Because of a rooftop photoelectric system... That's incredible. The article goes on to mention that the generation costs from a typical system are 13 to 14 cents/kWh while the costs of electricity to Commercial entities is around 21 cents/kWh. If you use these numbers it means a system like this is saving (21 - 13) * 76,140 = 6000ish Euros per year. This system would also be earning money on the 10% of electricity they export which is another 1000 Euros. The 7000 Euro/year cash flow expected in year 1 would actually improve over time as the price of retail electricity goes up. I ran a plant cost of 1250 Euro/kWp through my own LCOE model and came up with generation costs of 9 cents/kWh. Assuming these lower production costs your cashflow would be a little over 10,000 Euro/year. The system likely costs close to 120,000 Euros so it doesn't pay off overnight. Still, over its lifetime a system like this will pay for itself several times over. If you can swing the financing you can start saving money from day one."This requires a high degree of complexity."
Here's another zinger in the article...
"Up to 50 percent of domestic consumption and 50 percent self-sufficiency ratio should be no problem. Sometimes arise also interesting combinations with cogeneration. Then we establish contacts with the manufacturers. Or combining photovoltaics with heat pumps."
I like it... I love it... Gimme some more of it.
"Surpluses that are not consumed or stored in the building, we continue to feed into the grid. But the purely grid-linked systems are no longer a priority from today's perspective. The goal of the investment is to reduce operating costs."
This guy clearly gets it...
No comments:
Post a Comment